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Analysis of Knowledge:
What Should Mathematics
Teachers Know?

By Dorothy Vasquez-Levy & Maria A. Timmerman

Introduction

Recent efforts to reform mathematics education have resulted in recommenda-
tions that teachers change their instructional practices and use alternative reform
curricula to enable students to construct new knowledge of mathematical concepts
and skills (National Council of Teachers of Mathematics [NCTM], 1989, 1991,
1995, 1998). While actively engaged in challenging tasks, teachers and students are
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asked to work together to answer meaningful exer-
cises that involve logical and proportional reasoning
and testing and connecting mathematical concepts.
The NCTM Standards (1989, 1991, 1995, 1998)
emphasize goals and value judgments about what
students should know and be able to do. Being
explicitabout what one values as mathematical knowl-
edge is crucial for informing teachers’ assessment of
students’ knowledge of mathematics.

Yet, to what extent do mathematics teachers under-
stand the nature of knowledge? Because their teach-
ing decisions and actions influence the learning of
many, they are obligated to exercise a high regard for
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knowledge. There is consensus that a significant relationship exists between
teachers’ knowledge of mathematics, their conceptions of teaching, and their
understandings of students’ learning of mathematics (Fennema & Franke, 1992;
Knapp & Peterson, 1995). However, little is known concerning the evolving nature
of teachers’ understanding of knowledge that will support changes in their concep-
tions and practices to be more in line with the goals of current mathematics
education reform.

Current debate centers on preserving certain knowledge (e.g., teacher telling
versus student inventing computation procedures) but also working to dismantle
established regulations framing curriculum and standards of learning, Many
mathematics teachers agree that national reform principles and state standards are
important for students’ development of mathematical thinking and understanding,
but agreement ends there. Who should determine what mathematical knowledge
and pedagogy should be implemented? What standards are most valued? How do
teachers’ conceptions of mathematics and mathematics teaching and learning
contribute to decisions made about teaching practices? As Cooney (1984) claimed,
“I believe that teachers make decisions about students and the curriculum in a
rational way according to the conceptions they hold” (p. 89). Therefore, asking
teachers to implement standards-based curricula and pedagogy does not happen
overnight; it requires learning. Without in-depth, rich opportunities to assess their
own understanding of mathematics; their students’ mathematical knowledge; and
participating in analytical reflection on their practice; many teachers will find it
difficult to make sense of new mathematics curricula and teaching practices
intended to change the way they teach.

When mathematics teacher educators examine types of knowledge in the
context of teacher development, they are better positioned to plan, implement, and
assess ways to improve learning opportunities for teachers. We suggest that if
teacher educators attend to their own understandings of the nature of knowledge,
they can more readily interpret and assess the growing development of teachers’
understandings of knowledge. Furthermore, they can facilitate teachers” reflective
thinking about the nature of knowledge and how knowledge may be accepted when
teachers assess students’ understanding of mathematics.

In this article, we discuss types of knowledge and the specific conditions which
warrant them. To achieve this end, we discuss concepts from critical epistemelogy
as a preliminary analysis. We suggest a series of questions for a critical practice of
teaching that takes knowledge as information and the decision making of teaching
seriously.

Of Epistemological Perspective: The Nature of Knowledge

Asking what we know is the work of epistemologists, but it is also the task of
all teachers who make decisions about the meaning of students’ thinking on
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knowing and applying mathematics in their classrooms. The work begins with
common sense and scientific assumptions about what is real and what is known.
These convictions constitute our data, possibly even conflicting data if common
sense and science conflict. For example, some teachers gather data by observing
and listening to students construct their own ideas and meaning for specific
mathematical topics which often runs counter to many teachers® own learning
experiences of memorizing facts and procedures transmitted by their teachers. The
object of making meaning of students’ mathematical thinking, of which a system-
atic and critical analysis of prior information and practice is a component, is to
account for the data. Sometimes teachers explain the data, and sometimes they
explain the data away. For the most part, making meaning requires teachers to
construct an explanation for how we know the things we know, but in a few
instances, it also requires an explanation for why we think we know when we do not.

To explain what we do know and why we do not, however, we should first ask
what the knowledge is. Indeed, given the complexity of different aspects of
teachers’ knowledge and their relationship te the ill-defined nature of school
classroom environments within which teachers work, it is inexcusable for teachers
to accept any knowledge without first analyzing it and acquiring meaning for the
knowledge presented to them.

What is Knowledge? A Western Conception

People have knowledge. But what kind of knowledge do they have, and what
is knowledge anyway? There are many ways of knowing, but only one knowledge
for saying that something is true. Consider the following sentences;

1. I know calculators.

2. I know ways to draw triangles.

. I know the traditional computational algorithm for adding two three-digit

numbers.

4. T know algebra.

5. I know heuristics for solving problems.

6. I know the standards of learning in mathematics education.

7. I know that what you say is true.

8. I know the mathematical concept of 10 indicates that a 10 is the same as 10 ones.

9. I know the Moebius strip is a one-sided surface that has many unexpected
properties.

10. I know the sentence “I can construct physical or conceptual models of
phenomena” is true,

U2

These are but a few samples of different uses of the word Jmow describing
different sorts of knowledge. If we are interested in discovering what people have
when they have knowledge, we must first sort out the varied senses of the word
know. Then we may ask our question again: What is knowledge, once it has been
disambiguated?
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In one respect, “to know™ means to have some form of special competence. To
know calculators or to know multiplication tables up to 12 times is to be competent
to use calculators or to recall the products of any two numbers not exceeding 12. If
a person is said to know how to do something, it is this competent sense of “know”
that is usually involved. If I say I know ways to draw triangles, I mean that I have
attained the special kind of competence needed to recall the necessary and sufficient
conditions of its shape. If I say I know the traditional computational algorithm for
adding two three-digit numbers, I mean that I have the special competence required
to recall or to recite the characteristics of its occurrence.

Another sense of “know™ is that in which the word means to be acquainted with
something or someone. When I say that I know algebra, I mean that I am familiar
with the subject or acquainted with the content with this name. The sentence “I know
heuristics for solving problems” is more difficult to disambiguate. It might mean
simply that I am acquainted with heuristics and, therefore, have the acquaintance
sense of “know,” or it might mean that I have the special form of competence needed
to strategize and solve problems, mathematically and/or socially. It also might mean
that T knew it in both the competence and acquaintance sense of “know.” This
example illustrates the important fact that the senses of “know” we are distinguish-
ing are not exclusive; therefore, the term Anow may be used in more than one of these
senses in a single utterance.

The third sense of “know™ is that in which “to know"” means to recognize
something as information. If [ know that the mathematical concept of 10 indicates
thata 10 is the same as 10 ones, then I recognize something as information, namely,
the concept of 10 indicates that a 10 is the same as 10 ones. The last three sentences
on the list all involve this information sense of the word fnow. It is often affirmed
that to know something in the other senses of “know” entails knowledge in the
information sense of “know.” I must have some information about calculators if 1
know how to use one, about triangles if I know how to draw them, about
computational algorithms if T know the procedures, about heuristics if I know them,
and so forth. Therefore, the information sense of the word know is often implied in
the other senses of the word.

In this discussion, we are concerned with knowledge in the information sense.
It is precisely this sense that is fundamental to human thought and required for
theoretical speculation and practical judgment. To make decisions about the
meaning of students’ mathematical thinking, teachers require knowledge in the
information sense. This kind of knowledge goes beyond the mere possession of
information. If you tell me something and I believe you, even though I have no idea
whether you are a source of truth and have correct information about the subject or
are a disseminator of falsehood and deception, I may, if T am fortunate, acquire
information. This is not, however, knowledge in the sense that concerns us; it is
merely the possession of information. Similarly, if I read the local newspaper and
believe the information I receive, though I have no idea whether the paper is
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reporting accurately, | may acquire information, but this is not knowledge. For
example, in what is referred to as the California math wars, writers of the popular
press broadly disseminate criticisms of the mathematics education reform move-
ment by non-educators (mathematicians, scientists, parents, and other citizens)
(Schoen, Fey, Hirsch, & Coxford, 1999). Such ignorance of the reliability of the
source prevents us from recognizing that the information is correct, from knowing
that it is correct, even though we may believe it to be. It is the information that we
recognize to be genuine that yields the characteristically human sort of knowledge
that distinguishes us as adult thinking beings.

The generation of new ideas emerges from our ability to see and interpret things
in new ways, stemming from the creativity of the human mind. Qur most valuable
scientific achievements, the discovery of the double helix, for instance, and our
most worthy practical attainments, such as the unfolding of a system of justice,
depend on a more significant kind of knowledge. This kind of knowledge rests on
our capacity to distinguish truth from error.

Analyzing Selected Knowledge

To indicate the information sense of the word Anow as being the one in question

is quite different from analyzing the kind of knowledge we have selected. What is

an analysis of knowledge? An analysis is always telative to some objective. It does

not make sense simply to demand the analysis of knowledge, truth, goodness, or

beauty without some indication of what purpose such an analysis is intended to

achieve. To demand the analysis of knowledge without specifying further what you

hope to accomplish with it is like demanding standards of learning without defining

what kind of persons you hope students will become. Before asking for such an
analysis, we should make clear what goals we hope to achieve with it.

Useful Questions
When teachers are presented with knowledge in the information sense it is
always helpful to ask different types of questions. So far, we have emphasized four
important questions: (1)} What sense of the word now am T using?, (2) In what ways
is the information sense of the word know implicated in the other gsenses of the
word?, (3) What is the reliability of the source of this knowledge?, and (4) How do
1 distinguish knowing that the information is correct from believing it to be the case?
Another useful approach to verifying knowledge is to seek counterexamples to
what is presented in a teacher’s decision. For example, teachers should provide
learning experiences that engage students in developing proportional reasoning
because it is a “gatekeeper” to understanding high-school-level mathematics and
science courses (e.g., algebra, geometry, biology, chemistry, and physics). Sue-
cessful completion of these courses can lead to future careers in mathematics and
science. According to NCTM (1998),
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Proportional reasoning permeates the entire middle grades’ curriculum, is a key
integrative thread that connects most of the mathematics topics studied in the
middle grades, and can be developed in several areas of mathematics. (p. 213)

Students need many learning opportunities to develop a rich, deep understanding
of proportional relationships that exist in school and everyday situations involving
fractions, decimals, percentages, ratios, measurements, and similarity if they are to
make well-grounded decisions about using information. Otherwise, they will join
the “more than half the adult population [who] cannot reason proportionally™
(Lamon, 1999, p. 5).

As an example of a teacher focusing on developing her sixth-grade students’
understanding of proportional reasoning, Mrs. Kelly gave her students the follow-
ing problem about the growth of two snakes (Lamon, 1999).

Jo has two snakes, String Bean and Slim. Right now, String Bean is 4 feet long and
Slim is 5 feet long. Jo knows that two years from new, both snakes will be fully
grown. At her full length, String Bean will be 7 feet long, while Slim’s length when
he is fully grown will be 8 feet. Over the next two years, will both snakes grow the
same amount? (p. 12)

One goal for solving this problem is to have students use mathematical
reasoning rather than applying rules or using a proportion equation (e.g., a’b=c/d).
We invite readers to solve the problem before reading on and to compare your
responses to those of different groups in the class.

Students’ solutions to the problem tend to fall into two categories: those that use
absolute or additive thinking and those that use relative or multiplicative thinking.
Using absolute or additive thinking, the snakes will grow the same amount because
the change in the length of each snake is 3 feet. Actual growth is not compared to
or related to anything else. In contrast, using relative or multiplicative thinking, the
expected growth of each snake can be compared to its present length, that is, String
Bean will grow 3 feet which is 3/4 of her present length of 4 fect and Slim will grow
3 feet which is 3/5 of his present length of 5 feet. Because the relative change in
growth represented by the fraction 3/4 is greater than the fraction 3/5, String Bean
will grow more than Slim. Mrs. Kelly encouraged student discussion about the
problem so that all the groups would analyze the problem from these two different
perspectives; absolute and relative change.

Asthe students worked in groups, they drew pictures to represent the beginning
lengths of the two snakes, 4 feet for String Bean and 5 feet for Slim, and final lengths
of 7 feet and 8 feet, respectively, for the two snakes. Most of the groups mentally
calculated the difference between the beginning and final lengths of the snakes
which resulted in a growth of 3 feet for each shake. Some groups wrote down “3
feet” next to each of their representations of the snakes and shared their answer, that
the snakes would “grow the same amount” over the next two years, with the class.
Even though this answer was correct, Mrs. Kelly realized that many of the students
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only relied on very familiar additive thinking that they had practiced for several
years in elementary school.

When the teacher asked if any group had solved the problem in a different way,
Sonia’s group claimed that they had come up with two answers depending on how
you solved the problem. They agreed with most of the other groups and said one
answer would be that both of the snakes grew the same amount. A second answer
was that “Slim would grow more than String Bean™ because 3/5 was more than 3/4.
Looking at their drawings of the initial lengths of the snakes and the final lengths
in two years, the teacher noticed some numbers and calculations Sonia’s group had
written down, For String Bean, “3 feet,” “4 feet,” and “3/4 feet” appeared as some
of their work for solving the problem. Next to Slim, the group wrote “3 feet,” 5 feet,”
and “3/5 feet.” Below the drawings, Sonia's group wrote two inequalities: “5>4”
and “3/5>3/4.” Without verification, Mrs. Kelly could decide that this group of
students had used multiplicative thinking because the final inequality (i.e., 3/5>3/4)
did use the correct fractions to compare the relative change in growth; yet, either
they did not understand how to reason about the size of fractions or they used an
incorrect inequality symbol.

Looking to verify her understanding of the students’ solution, Mrs. Kelly
challenged Sonia to explain how her group solved the problem. Sonia explained that
they first calculated “in our heads” how much each snake grew individually over
the two-year period. Like many of the other groups, they determined an absolute
change of 3 feet for each snake, so the snakes would grow the same amount. Then,
Sonia explained that one of the group members said that Slim grew more because
he was bigger in the beginning. In attempting to verify if the group had indeed used
multiplicative thinking, Mrs. Kelly questioned Sonia about what the final inequal-
ity, 3/5>3/4, meant in their written work. After some hesitation, Sonia explained
that in comparing the initial lengths of the snakes, Slim’s 5 fect was greater than
String Bean’s 4 feet, so they wrote “5>4.” Next, they decided to use the 3 feet from
their first answer and wrote their second answer, “3/5>3/4” because they had
recently used fractions to solve other problems. Also, they decided to keep the
greater than symbol because both fractions had numerators of three, so they only
had 1o look at the denominators of the fractions. Because the “five” in 3/5 was
greater than the “four” in 3/4, Sonia’s group decided that “3/5>3/4” which would
result in Slim growing mote than String Bean. Moreover, their comparison of the
fractions affirmed one of the group member’s belief that Slim grew more than String
Bean because he started out as the bigger snake. By listening to Sonia’s reasoning,
the teacher verified that this group of students had not used multiplicative thinking
even though the “correct” fractions appeared in their work. Although they seemed
to understand how to use inequality symbols, they made connections to their
familiar whole number knowledge rather than rational number knowledge when
comparing the size of the fractions.

Any experiment of fact or thought that would falsify the resulting equivalence
U
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is a counterexampie. Begin by considering any logically possible case as a potential
counterexample to the knowledge before you. It may be that some examples,
though logically possibie, are so remote in terms of real possibility that they do not
constitute realistic objections to any analysis of knowledge.

1t is important to consider from the onset what a teacher’s informed decision
is attempting to explain, hence the analysis. Aside from the responsibility, making
and analyzing meaning of students” mathematical thinking also carries obligations
to act. One obligation is to ensure that the representation the meaning from thinking
takes as it informs people is correct information rather than error and misinforma-
tion. Teachers should be certain that they have all the information. Such an
obligation requires one to make certain the information is accurate and not simply
believe what he or she observes, but “to know that” the meaning-making process
is correct. Similarly, if in the work of analyzing the meaning of students’ math-
ematical problem solving, you possess some information in memory in relation to
the thinking but no longer know whether it is correct information, whether it is
something you accurately remember, or just something imagined, you are ignorant
of the matter. If, on the other hand, you have verified whether the meaning is correct,
then you can “know that” the information possessed is correct.

One way to test your “knowing that™ the information you possess is correct is
to determine whether you can answer the question of how you know that the
information is correct or how you would justify claiming to know. These are the
critical questions, and the answers are the basis for critical discussion and rational
argument in teaching, scientific inquiry, and everyday life. The responses 1o these
questions indicate whether the conditions for knowledge have been met. If a person
claims to know something, how well he or she answers the question “How do you
know?” will determine whether his or her claim is accepted. Consequently, the
analysis of knowledge should demonstrate how a person knows that his or her
information is correct and how his or her knowledge claims are justified. Such a test
requires knowing agents—individuals who understand the difference between
truth and correct information on the one hand and deception and misinformation on
the other.

In summary, teachers can be more understanding of knowledge by asking
certain types of questions. For example, to understand the knowledge in use, begin
by asking,

1. What is the sense of the word krow I am using?

2. In what ways is the information sense of the word inow implicated in
the other senses of the word?

3. What is the reliability of the source of this knowledge?

4. How do I distinguish knowing that the information is correct from
believing it to be the case?

3. Are there counterexamples to what is being presented in the meaning of
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students’ mathematical thinking? Any experiment of fact or thought
that would falsify the resulting equivalence is a counterexample.
6. How do [ know that the knowledge in the information sense is correct?

Further, it is important to raise these questions in the context of mathematics
teachers” professional development because they engage teachers in clear articula-
tion of what they value as types of mathematical knowledge in use to assess the
depth of students’ understanding of mathematics. Such questions examine how
teachers know whether the knowledge being evaluated is correct and reliable.

One goal of professional development is to encourage teachers’ discussion and
analytical reflection on the nature of knowing when assessing the understandings
of students. Discussion can raise issues related to a developmental construction of
mathematics in which we move beyond a binary notion of those who either “have
it” or “do not have it” in terms of knowing mathematics. These questions can also
enable mathematics teacher educators to address their own understandings of the
nature of knowing when interpreting and assessing the depth of teachers’ under-
standing of mathematics and the teaching and learning of mathematics.

Next, we turn to discussion of what makes knowledge warranted.

Conditions of Knowledge

Our intent in this section is to provide a thumbnail sketch of the three conditions
for knowledge. The first is truth. Something is true if and only if the truth is known,
For instance, it is true that the California State Board of Education adopted the new
California Mathematics Standards (1997) if and only if the California State Board
of Education did adopt the new California Mathematics Standards. The second
condition of knowledge is what Lehrer (1990) called acceptance. If we deceitfully
claim to know that mathematical instruction is no longer teacher-directed explana-
tions of procedures but rather student-invented algorithms facilitated by teachers
when we do not accept it, then we do not know it even if this is what is stated, If we
do not accept that knowledge, then we do not know that knowledge. “It is the
acceptance of something in the quest for truth that is the required condition of
knowledge” (Lehrer, 1990, p. 11). Furthermore, a person need not have a strong
feeling that something is true to know that it 1s. What is required 1s acceptance of
the appropriate kind, acceptance in the interest of obtaining a truth and avoiding an
error in what one accepts (Lehrer, 1990). The terms that should always be
introduced when precision is needed in analyzing a knowledge claim are accept and
acceplance.

The final condition for knowledge is justification, and its purpose is the
attainment of truth. Truth is what propels the engine of justification. How are we to
decide whether what is suggested to us by our senses is true and accurate rather than
false and illusory? We have to consult information about the matter. What is this
information? It is what we have accepted in our search for the truth. Acceptance is
L
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what stimulates the engine of justification. Our acceptance system is the tool we use
whenever we have to decide what to accept on the basis of the information we
currently hold. It is our repository of information about the world, and it is the basis
for making judgments. We have to decide how reasonable it is to accept new
information in comparison to other competing factors. Now, inresponse to new data
and further deliberation, one’s acceptance system changes. If we find the informa-
tion to be more trustworthy in terms of source and situation than conflicting or
undermining objections, then it is more reasonable for us to accept the information
on the basis of that system because of the way it relates with that system. That is the
way coherence renders in justification. Our ability to verify information is crucial
to this notion of coherence. Because we are human, we are capable of making
mistakes in our judgments. Therefore, it is important that we not only call upon our
acceptance system but simultaneously correspond the information we accept with
evidentiary data. As Lehrer (1990) suggested, “Knowledge, or undefeated justifi-
cation, results from the right combination of coherence, acceptance, and truth” (p.
151). Put another way, we accept what we do with the objective of attaining truth
and aveiding error.

Conclusion

Our development of the analysis of knowledge and the specific conditions for
warranting it offers a particular conceptual lens that frames our thinking about
teaching and what mathematics teachers should know. A challenge before us as
mathematics teachers is determining whether our justification is complete and
undefeated. What is required of us is to ensure that the judgments we render are
well-grounded. This alone will determine whether we succeed in our attempt to
make sound decisions. If we succeed in our efforts without acting on error, our
Jjustification for making meaning of students’ mathematical thinking is complete
and undefeated, and we gain knowledge. If our decisions rest on error, we have lost
the prize of knowledge. We argue that mathematics teacher educators’ understand-
ings about the nature of knowledge and its relationship to teacher development have
the potential to contribute to teachers shifting away from acquired or superficial
aspects of knowledge toward acceptance or more significant aspects of knowledge.

A Final Note

For those interested in reading literature on the theory of knowledge, there are
anumber of good introductory texts. Paul K. Moser and Arnold Vander Nat (1987)
edited a general collection of essays called Human Knowledge. This text presents
ideas from both the classical and contemporary literature. George S. Pappas and
Marshall Swain (1978) edited a collection of contemporary articles on the nature of
knowledge Essays on Knowledge and Justification. Two readable traditional works
are The Problems of Philosophy by Bertrand Russell (1959) and The Problem of
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Knowledge by Alfred J. Ayer (1957). Among the helpful texts by individual authors
are: Contemporary Theories of Knowledge by John L. Pollock (1986); Belief,
Justification, and Knowledge by Robert Audi; Theory of Knowledge (3rd ed.) by
Roderick Chishelm (1989); and Theory of Knowledge by Keith Lehrer (1990).

For those interested in reading literature on the theory of mathematics, see The
Philosophy of Mathematics Education by Paul Ernest (1991), and What is Math-
ematics, Really? by Reuben Hersh (1997).
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