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Questions To Ask

and Issues To Consider
While Supervising
Elementary Mathematics
Student Teachers

By Randolph A. Philipp

Recently I was asked to make a presentation to
supervisors of elementary school student teachers
about the teaching of mathematics. | structured the
presentation around a set of questions the supervisers
might ask student teachers about the mathematics
lessons they observe. Before sharing these questions,
however, I must address whether there is a need for
such questions. After all, have the students not com-
pleted an elementary mathematics methodology
(EMM) course in which they learned how to teach
mathematics? I begin this paper with a vignette,
drawn from my EMM course, that illustrates that
beginning student teachers have a wide variety of
beliefs, values, and knowledge about the teaching
and learning of mathematics. If supervisors continue
to challenge the student teachers’ assumptions and

69




Supervising Elementary Mathematics Student Teachers

L e

practices about the teaching and learning of mathematics, those student teachers
may develop more effective ways to teach mathematics.

Vignette |
Learning about My Preservice Elementary School Teachers
Anevent that occurred half way through one elementary mathematics methods
course caused me to think very differently about what { was accomplishing, The
day’s lesson began with a discussion about introducing multiplication using base-
ten blocks, After the discussion I asked a student who had been considering how to
teach multidigit multiplication if she wanted to share her thinking with the class.
Karen (all names used are pseudonyms) was glad to try out her ideas. Rather than
teach the traditional algorithm, Karen wanted to work with an expanded algerithm
because she thought it would engage her fourth-grade students in making sense of
the algorithm and because it focused on place value. The traditional algorithm and
an expanded algorithm (both displayed in Figure 1) were placed side by side on the
chalkboard.

Figure 1
Two Ways To Multiply 23 x 22

23 23

X 22 x 22
46 6

460 40

60

506 400
506

Two students disagreed about which approach is better: Betty stated that the
standard algorithm is the best approach whereas Sarah reasoned that students might
learn to apply the algorithm but would not understand it, A transcript excerpt
follows:

Betty: It makes sense to do the standard algorithm. Just tell them that it is
460 because it is 20 x 23 [when multiplying by the 2 in the tens place)].

Randy: So you would just tell them?
Betty: Yeah.

Sarah: To teach with understanding, you must start with the long way.
[She compares doing long division before short division.]
I
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Randy: Betty said, “This [standard algorithm] makes the most sense. Just
help them understand that this 2 is 20, and they'{l understand.” What
about that?

Sarah: It doesn't make sense if you teach it [the traditional algorithm] to
them first.

Randy: Why?

Sarah: Because they won't understand place value; they 're just doing the
3 times 2, then 2 times 2. . . .

Betty:  would tell them. All you have to do is tell them.

Sarah: Even ifyoutell them, it is not going to be a visual enough thing, and
if you tell them, they are going to go, “Uh huh, uh huh (nodding her head),”
and they are still going to be doing [the algorithm without understanding
place value].

Randy (summarizing): Betty says that the standard algorithm makes sense;
you can just tell them the 2 is really 20. Sarah says that they will listen but
not understand, and it is best to do it the long way first.

At this point many students have raised their hands to respond to the discussion.
Following are some of the responses;

Kevin: I don’t see what the problem is with working backward. You can
show them how to do it {the standard algorithm] so that they get the right
answer, and then you can always go back and dissect it. I don't see why you
can’t show them the process. Show them the process, the easy process, and
let them have some success with it, and then you can go back and dissect
it.... As long as the process gets done and as long as the meaning gets to
them later on, I don't think it really matters.

David: Same as him [referring to Kevin]. Why not work backwards? Why
not start with the easier one [the standard algorithm], and at first maybe
they won't have the concept of "Why do I put the zero here?” Just tell them
to "Put it here.” Get them rolling with it.

David goes on to explain that even if students do not know place value, they can still
have success with the traditional algorithm, but not with the expanded algorithm.

Francis: 1 agree with what David said, because hopefully by the time all
of your children exit fifth grade they will know place value, but if not-—
if some of them don’t—they still will know double-digit multiplication,
which they are going to use throughout life. [ didn’t know that concept
when I was in fifth grade. I did fine throughout math. I knew how to do

71




Supervising Elementary Mathematics Student Teachers
L -
double-digit multiplication. I think that that is the most important thing,
that they know how to do it.

Carol: ] justremember going through school and 1 never knew, like 20 was
in the tens place, in #at form. It was college that I figured that out. [t was
like a clue-in. ‘Cause I was doing algorithms, and that's how [ got the
answer, | was doing everything separately. So, I don't know if it is that
important for the child to know exactly. ‘Cause [ got through, alt through
my years not knowing that, and in college [ went, “Oh!”

lunderstand how difficult it is for teachers to teach conceptually, and [ was prepared
for many of my students to tell me that if given the opportunity they would probably
teach the traditional algorithm to their students. What [ was not prepared for were
the reasons they gave. [ was prepared for the students to say that they would like to
teach conceptually but that they feit constrained, either by their exiernal circum-
stances or by their lack of confidence. But instead, many said that success at the
algorithm was of primary importance, and after their students learned the algorithm,
then they might come back and help them learn the concepts. Because of the goals
I had held for the lessons to this point in the course and the activities that for me
promoied those goals, [ was surprised to hear many of my students respond thisway.

I share this story, first, to acknowledge that the process of learning about what
one is and is not accomplishing in teaching is an issue of constant concern. Second,
these students were my elementary mathematics methods students, and the beliefs
many of these students held would not support the kind of mathematics learning
value. How is one to supervise such students? Instead of viewing these students as
incapable of teaching mathematics meaningfully, supervisors who view them as
being in the process of growing and evolving will be able to more effectively
interact with and support these students.

Four Questions

I hope the following four questions might help supervisors who want to support
their student teachers’ development as mathematics teachers. These questions
mean little without providing rationale and examples designed to illustrate what I
have in mind with each question, and the examples | provide were drawn from the
research literature and from my own experience. Just as these questions are of little
value without the rationales and examples accompanying them, student teachers’
responses will be useful only if accompanied by specifics that arise from careful
consideration of the complexities of their teaching and their beliefs about math-
ematics teaching and learning. The first two questions are about content, the third
is about methodology, and the last is about assessment.
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Content

(1) What mathematical concepts are you teaching? What mathematical
procedures or algorithms are you teaching?

Data from the Third International Mathematics and Science Study (TIMSS)
indicate that in the United States today most students are being shown how to do
mathematics but not how to reasen about mathematics (Stigler & Hiebert, 1997).
Mathematics educators are interested in both, and although I think there is a place
in mathematics for learning procedures and algorithms, [ think that these areas have
been overemphasized at the expense of understanding of the underlying concepts.

In the literature are numerous examples of students learning mathematical
procedures without also learning the underlying concepts, and after sharing some
examples from my own work in schools, [ will turn to some of that literature.
Vignette 2 portrays one conversation I had with a child in first grade and another
with achild in fifth grade. The two children are successful in their respective classes.
Notice how the first-grader’s reasoning is built around an image she has developed
from one experience with pattern blocks, and notice how the fifth grader seems to
have no image on which to draw and seems instead to be trying to recall the
appropriate way to manipulate the symbols.

Vignette 2

The Consequences of Learning Procedures Without Understanding:

An Example from Fractions

For the past few years I have tanght weekly in classrooms at a local public

school. One October I introduced fractions to first-grade students by having them

-work with pattern blocks as they constructed wholes using red trapezoids (halves),

blue rhombi (thirds), and green triangles {sixths). By the end of the lesson, scme

students were constructing wholes using different-sized pieces. At this time wedid not

represent any of the fractions symbolically; instead we just spoke about the fractions,

The very next day I was at my son's soccer practice when two mothers asked

me what I was doing in the first-grade class. Alyson, a student from the class,
happened to be standing close by, so [ calted her over. Alyson and I talked:

Randy: Alyson, is a half and a half more than a whole, less than a whole,
or equal to a whaole?

Alyson: What does equal mean?
Randy: Equal means "is the same as.”

Alyson: It is equal to 2 whole,

—— — S ————
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Randy: Is a third and a third more than a whole, less than a whole, or equal
to a whole?

Alyson: Less than a whole.
Randy: How do you know?
Alyson: Because you need another third to make it a whole.

Randy: Is ahalf and a third more than a whole, less than a whole, or equal
to a whole?

Alyson (after about five seconds): 1.ess than a whole.
Randy: How do you know?
Alyson: Because you need another sixth to make it a whale.

Randy: Alyson, how did you think aboui that question? Are you picturing
something in your mind?

Alyson: A red and a green.
Randy: You mean you know a red is a half and a green is a sixth?

Alyson: Yes,

Notice how quickly Alyson was able to make the link between the physical model
and the fractional names. Our schools are filled with first graders who, if given the
chance, are ready to reason as Alyson did.

Later that year I was escorted to a class by a fifth grader who told me that his

class had been studying fractions, so I posed the same questions [ had asked the first
grader. Gur conversation went as follows:

Randy: Jim, is a half and a half more than a whole, less than a whole, or
equal to a whole?

Jim:Equal to a whole.
Randy: Is a third and a third more than a whole, less than a whole...?
Jim (Interrupting): It is two sixths.

Randy: Hm. That's interesting. When I asked you what one half and one
half was, you said cne whole, but when I asked about one third and one
third, you said two sixths.

Jim:Hm. Oh, ok, | see now.
Randy: What is it that you see?

Jim: One half and one half is two fourths.
]
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Unlike the first grader who had a way of picturing halves and thirds in her mind, Jim
primarily thought about these fractions by considering the symbols and procedures.
Asaresult, he would manipulate the symbols in his head, but he had little experience
developing number sense to support his thinking.

Alyson was mentally manipulating pattern blocks whereas Jim was mentally
manipulating symbols. Alyson’s solution was correct whereas Jim’s was not. What
differences might account for Alyson's success and Jim's difficulties? One differ-
ence that may appear significant is that Alyson used manipulatives to associate
meaning with the fraction names, The use of manipulatives is, however, not a
magical cure-all; Deborah L. Ball {1992) has described situations in which students
used manipulatives without learning the mathematics intended by the teacher. A
more important difference involves the norms established in each classroom, Erna
Yackel and Paul Cobb (1996) distinguished social norms, which are general and
might be established in any classroom, from sociomathematical norms, which are
norms particular to a mathematics class:

Tofurther clarify the subtle distinction between social norms and sociomathematical
norms we offer the following examples. The understanding that students are
expected to explain their solutions and their ways of thinking is a social norm,
whereas the understanding of what counts as an acceptable mathematical explana-
tion is a sociomathematical norm. Likewise, the understanding that when discuss-
ing a problem students should offer solutions different from those already
contributed is a social norm, whereas the understanding of what constitutes
mathematical difference is a sociomathematical norm. {p. 461}

Jim behaved as if for him the norm when working with fractions was acceptance of
algorithms over reasoning. Given that Alyson had not yet learned any algorithms
for fractions, such a norm could not yet have been established for her,

As a basis for considering conceptual and procedural understanding, I present
one view of what is meant by fo understand. James Hiebert and Thomas P.
Carpenter {1992) summarized the research in cognitive science and in mathematics
education to present a model of understanding as a network of relationships
between and among concepts, procedures, and facts. Mathematical concepts,
procedures, and facts are understood by an individual insofar as they are integrated
into that individual's network of mental representations, and the degree of under-
standing is determined by the number and strengths of the connections among these
concepts, procedures, and facts. In other words, one way to learn is to develop new
connections ameng already existing mental nodes. Learning mathematics then
should involve the development of such links. Vignette 3 illustrates the incomplete
development of links between a second grader’s understanding of place value and
his knowledge of the standard algorithm.
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Vignette 3
A Second Grader Subtracting with (and without) Piace Value
One morning over breakfast my older son, Elliot, a second grader, was trying
to determine "how many games over 500" each major league baseball team was, by
finding the difference between the numbers of games a team had won and lost, At
the time the Atlanta Braves had the best record in the National League with 38 wins
and 14 losses, and Elliot was having trouble figuring cut how many more games
they had won than lost. I reminded him that he could think of this as subtraction, and
he correctly solved the problem using the predominant American algorithm for
subtraction, Elliot’s younger brother, Andrew, who had just turned five, also
wanted to solve some subtraction problems; I gave him problems he could solve
{e.g.,9 -4 and 10 - 6). When I left the room and Andrew ran out of problems, Elliot
decided to play the role of teacher; he gave Andrew the subtraction problem 4 - 5,
As I reentered the room, Elliot was explaining his sclution to his younger brother.
His work is shown below:

I3
ALY
5

Elliot had learned this procedure in second grade, but he was confused as to when
to apply it. Although it might seem that Elliot had learned subtraction without
developing the important supporting place value knowledge, that was not the case.
Later that same day Elliot, riding his bicycle, accompanied me when I ran. I posed
math questions to him: 100 - 60, 100 - 30; then 100 - 63, 100 - 46; then 1000 - 600,
1000 - 300; and finally 1000 - 420. He correctly figured the answer to each question
using only “his head.”

Elliot had learned the subtraction algorithm and could apply it when his teacher
posed questions. He had also developed enough place value knowledge to subtract
63 from 100 and 420 from 1000 without applying a written algorithm. Yet his
understanding of these ideas was fragile, and when he wrote a problem for his
brother, he constructed one that looked similar to problems he had seen but was
different in a way that was evidently not significant to Elliot. What happened in this
case? First, nate that Elliot was in a novel situation; in school one seldom asks
children to construct problems and even less often asks students to construct
problems to be used with younger children. Secorid, Elliot knew that his younger
brother was comfortable with small numbers in subtraction problems, and perhaps
that was on his mind when he wrote 4 - 5. In any case, when faced with the need to
subtract 5 from 4, without drawing any connection between his procedure and his
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knowledge of place value, he invoked his “cross out the number, reduce by 1, and
put the 1 there” procedure, which had worked for him in the past. Because there was
no number “next door” to cross out, however, he crossed out the enly digit in the
minuend. Elliot has in place many of the pieces related to multidigit subtraction, but
the connections among these pieces are not yet strong.

Having rich and strong mental connections among concepts and procedures is
powerful because it is generative, enhances transfer, promotes remembering, and
reduces the amount to be remembered (Hiebert & Carpenter, 1992), These connec-
tions develop gradually and differently in each student. If educators beleve in the
importance of students’ developing connections among the conceptual ideas and
the associated procedures, then they are left with a question: What is the relationship
between developing conceptual knowledge and procedural knowledge? The rela-
tionship is complex and not completely understood. Researchers who study
children’s thinking have found that students can learn to perform procedures and
apply algorithms without understanding the underlying concepts. Consider aresult
from the Second National Assessment of Educational Progress (NAEP} in Math-
ematics:

In general both of the younger age groups performed at an acceptable level on
knowledge and skill exercises.... Students appear to be learning many mathemati-
cal skills at a rote manipulation level and do not understand the concepts
underlying the computation. (Carpenter, Kepner, Corbitt, Lindquist, & Reys,
1980, p. 47)

For example, whereas 70 percent of 13-year-olds correctly performed a certain
division computation in the second NAEP, only 40 percent correctly solved a word
problem that required dividing the same numbers used in the computation.
Students’ greater success with knowledge and skill exercises than with conceptual
understanding is a continuing trend, evidenced by subsequent NAEP reports
(Lindquist, 1989). This finding is not surprising inasmuch as whether teachers are
surveyed (Mullis, Dossey, Owen, & Phillips, 1991) or ohserved (Eisenhart et al.,
1993; Stigler & Hiebert, 1997), they are found to focus on teaching facts and
procedures much more than on teaching reasoning.

An example illustrating the complex relationship between conceptual knowl-
edge and procedural knowledge, drawn from the Cognitively Guided Instruction
literature (Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Fennema, Franke,
Carpenter, & Carey, 1993), involves a second grader who was presented 70 - 23
written vertically. Following a common misapplication of the traditional subtrac-
tion algorithm, she responded, “Fifty-three.” She was then asked whether she could
work the problem another way, and using both base-ten blocks and then a hundreds
chart, she arrived at 47. She was clearly confused by these conflicting answers, and
when she was asked by the interviewer which she thought was correct, she pointed
to the 53, the result from applying her procedure. After rechecking her calculation,
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she said, “This [algorithmic solution] kas to be right,” This child’s second-grade
teacher had not taught the algorithm but had instead encouraged the students to use
strategies with which they were comfortable, strategies that made sense to them.
The child’s father, a student teacher at the time, thought that his daughter should have
learned the algorithm, so he taught it to her. Fortunately she had previously developed
the place value concepts necessary to solve such problems (several days later the child
told the interviewer that she understood her error}, but this episode highlights the
importance that students ascribe to the use of algorithms in mathematics.

Another consideration related to teaching mathematics concerns the beliefs
that students develop. A teacher enrolled in a mathematics education master’s
program observed that her students asked why when learning science and social
studies, but they never asked why when learning mathematics. She asked her best
mathematics student about this observation, and he explained, "Of course youdon't
ask why. In mathematics you only have to know fiow.” In contrast, consider a study
of first graders drawn from six classrooms in two different school systems {Franke
& Carey, 1997). All the teachers in these six classrooms provided their students with
opportunities to solve avariety of addition, subtraction, multiplication, and division
problems presented in context. The teachers expected students to solve problems in
various ways, and they expected the students to explain their reasoning. Thirty-six
children from these classes were individually interviewed to determine their views
about mathematics and the teaching and learning of mathematics, and responses
were coded into categories. When students were asked “What would you tell
kindergartners about what math is like in first grade?” 28 (78 percent) students’
responses were coded into the “solving problems” category, 14 (37 percent)
students’ responses were coded in the “talking about mathematics” category, only
two (6 percent) students’ responses were coded in the “focusing on correct answet/
paper and pencil tasks” category, and one (3 percent) student’s response was coded
in the “speed and accuracy” category. When asked what their teachers would want
to know about solving a problem, 36 (100 percent) students responded that their
teachers would want to know how they solved the problem and none responded that
their teachers would want to know their answers. When asked who should decide
if a student's answer is carrect, three (8 percent) said that the teacher should, 28 (78
percent) said that the students themselves should, and five (14 percent) said that
both the teacher and students should decide. On the basis of these data, Megan L.
Franke and Deborah A, Carey concluded that if children are in classrooms in which
(a) problem solving is valued, {b) instruction is in the spirit of the National Council
of Teachers of Mathematics Curriculum and Evaiuation Standards (1989), and {(c)
teachers have and use knowledge of children’s mathematical thinking, then they
“hold different perceptions about what it means to do mathematics from those
traditionally held by students” (p. 23). This study shows the effect of the instruc-
tional environment on students’ beliefs about mathematics.

The first question highlights the principle that when teachers and students
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adopt the stance that what is taught in mathermnatics can be understood meaningfully
and not just memorized as a procedure, the elementary school mathematics content
is seen in a different light. When teachers teach their students algorithms without
teaching the mathematical concepts embedded in the algerithms, children will learn
to do mathematics without understanding it. However, when teachers view math-
ematics as an integration of concepts and procedures and create a mathematical
learning environment in which their students are expected to make sense of
mathematics, they will help their students develop mathematical understanding that
can transfer to other contexts within and outside of school.

Content

(2) Are the concepts and procedures part of a unit? If so, then in what
order should concepts and procedures be taught? How do the ideas
presented in today's lesson build upon what you did yesterday, and
where will this go tomorrow?

Learning takes time, and most of the important things one learns are learned not
in a day but over longer periods of time. So is it with mathematics, especially if
educators come to value the kind of understanding described heretofore. A student
may be able to learn the multiplication algorithm in one day, but the place value
knowledge required for students to understand the multiplication algorithm must
develop over time. Can teachers, when thinking about the mathematics they want to
teach, consider how the ideas and pracedures might unfold over the course of the unit?

A critical question to consider when thinking about the development of ideas
in a unit is whether the order of development of conceptual knowledge and
precedural knowledge matters. The verdict is still out on this question, although
evidence indicates that the order is important. As part of a study designed to test a
theory for how students develop competence with written symbols of decimals,
Diana Wearne and Hiebert (1988) provided students with a treatment comprising
nine lessons designed to help them develop conceptual understanding of decimal
fractions. In analyzing the task 2.3 + .62, Wearne and Hiebert compared perfor-
mance of the 14 fourth and fifth graders who had no previous instruction in decimals
to the performance of the 15 fifth and sixth graders whe had previous instruction
in decimals. Of the 14 children with no previous instruction in decimals, none
completed this task correctly before the treatment and 11 (79 percent} completed it
correctly after the treatment. Of the 15 students with previous instruction in decimals,
one completed it correctly befare the treatment and six (40 percent) completed it
correctly after the treatment. Wearne and Hiebert concluded, “Frior instruction that
encouraged the routinization of syntactic rules seemed to interfere with, and pre-
vented the adoption of, semantic analyses of the affected tasks. Apparently, it is
difficult for semantic processes to penetrate routinized procedures” (1988, p. 380).

s S
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Nancy K. Mack’s (1990) findings were sirilar when she conducted individual
teaching experiments designed to help eight sixth-grade students build upon their
informal knowledge of fractions. Mack defined informal knowledge as "applied,
real-life circumstantial knowledge constructed by the individual student that may
be either correct or incorrect and can be drawn upon by the student in response o
problems posed in the context of real-life situations familiar to him or her” (1990,
p- 16). Mack found that students’ knowledge of procedures often prevented them
from drawing om their informal knowledge of fractions, and she found that, at least
initially, students often trusted answers obtained by applying faulty procedures
more than those obtained by drawing on informal knowledge. For example, when
asked how to add fractions, Tony said, “Across. Add the top numbers across and the
bottom numbers across.” Mack then asked Tony how much pizza he would have if
he had 3/8 of a pizza and she gave him 2/8 more of a pizza. Tony responded:

Five-eighths. (Goes to his paper on his own initiative and writes 3/8 + 2/8 =, gasps,
stops, then writes 5/8.) I don't think that's right. I don’t know. I think this (the 8
in 5/8) just might be 16. I think this'd be 5/16. (p. 27)

All eight students in Mack’s study attempted to resolve inconsistencies by applying
knowledge of faulty procedures; with careful assistance from Mack, students could
overcome the interference of faulty procedures, but not easily.

Anton S, Klein, Meindert Beishuizen, and Adri Treffers (1998) have presented
additional evidence to support the notion that the order in which procedural
knowledge and conceptual knowledge develop matters. They compared classes of
second-grade students in two mathematics programs: In the Gradual Program
Design (GPD) classes, procedural computation was initially emphasized in instruc-
tion; the Realistic Design Program (RPD), however, was designed to stimulate
“flexible use of solution procedures from the beginning by using rea/istic context
problems” (p. 443). At the end of second grade, the RPD students, who were given
freedom to choose their own solution strategies during instruction, were more
efficient in choosing solution strategies and just as competent in accurate compu-
tation compared with the GPD students, who had been drilled on specific strategies.

If educators take seriously the notion that the order in which mathematics is
taught makes a difference, they are poised to rethink much of what happens in
mathematics classes. Consider the two algorithms for multiplication of multidigit
numbers, displayed in Figure 1. The first one, usually taught in the United States,!
can be learned without much place value knowledge, whereas using the second
requires students to focus on place value ideas. The first algorithm may be easier for
students to learn, but the second algorithm is more likely to be learned in connection
with the underlying place value ideas, and, as such, it may provide students with a
deeper, more connected understanding. Thus, even if educators believe that
students need to learn the first algorithm, to promote sensemaking they could start
with the second algorithm and teach the first only after students have come to
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understand the origins and meanings of the partial products in the second.

Consider the sequencing of a typical mathematics lesson. When teaching
mathematics, teachers generally tell the students the new concept, show them a
procedure to use, and then set the students loose. Could teachers not, at least on
occasion, give students a problem or task and get out of the children's way as they
think about the task and how they want to solve it? Could teachers not ask students
to sharetheir different approaches and attempt to develop a climate in class whereby
what students say mathematically is vatued by all? Could they expect students to
share their solutions and to listen to one another? I realize that these ideas seem
foreign to some teachers, and [ am not asking that they do this every day, but could
they then do it a couple of times every unit? Could they begin each unit by posing
these open-ended questions?

In each weekly mathematics lesson I teach in a local public school, T have the
children sit in a circle, give them manipulatives and paper and pencil, and pose
problems for them to think about. One outcome of this experience is that the
children have learned that they are expected to listen not only when the teacher
speaks but also when other children speak, and they are beginning to develop more
sophisticated listening skills.? _

For teachers who wish to provide students epportunities to think creatively but
do not know where to begin, one approach is to change the usual order of a lesson.
Instead of beginning with the explanation and ending with the classwork or
homework, try starting a lesson by giving one of the classwork or homework
problems and give the students time to think about the problem and share their
approaches before showing the solution. An argument against this approach is
“How are students supposed to know how to do something before they are shown?”
This is a valid question in circumstances in which the mathematics being taught is
relatively unrelated or completely isolated from what the students know. But when
teaching mathematics, one seldom successfuily teaches concepts or procedures that
are unrelated to everything else the students know.

The second question addresses which should come first, the concepts or the
procedures? Many of the preservice teachers from Vignette 1 believed that children
should learn procedures first. However, the research on children’s mathematical
thinking paints a picture indicating that children who learn procedures before
concepts may not learn the concepts as well as those children who learned the
concepts before the procedures. Is there a middle ground whereby children learn
concepts and procedures simultaneously? Perhaps, although I fear that when such
instruction is attempted, most children pick up that what is really important are the
procedures, and hence they do not learn the concepts. If I were responsible for
teaching fraction concepts to one of the two children in Vignette 2, I would prefer to
teachthe first grader even if the fifth grader were "more intelligent, " because I believe
that the fifth grader’s previous procedural fraction work has oriented him away from
making conceptual sense. Thatis, in some way, he has been mathematically damaged.
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Methodology
(3) What types of questions do you pose?

There are many reasons to ask questions in a mathematics class, including to
keep students on task (Johnny, are you with me?), to find out what students know
(What is 4 times 57), and to provide students an occasion to share their thinking
(Who can share how you thought about this?). But there is another purpose for
asking questions, one that too often is ignored by mathematics teachers: to get
students thinking (Here is a problem. How might you solve it?}. Unfortunately,
teachers often answer their own questions or expect students to answer the questions
immediately (with the answer the teachers have in mind), and they are uncomfort-
able posing problems or asking open-ended questions. Teachers tend to use
questions as a means of moving their lessons toward some desired end, and one
unintended consequence of this goal-driven lesson is that students may not be
required to think creatively or originally.

The questions teachers pose often reflect the underlying goals they hold for
instruction. Alba G. Thompson, Randolph A. Philipp, Patrick W. Thompson, and
Barbara A. Boyd (1994) suggested that teachers who are guided by a fundamental
image of mathematics as the application of calculations and procedures for deriving
numerical resutts will pose calculational questions, whereas teachers guided by an
image of mathematics as a system of ideas and ways of thinking will pose
conceptual questions. For example, consider the problem: “Susan drives 240 miles
in 5 hours. What is the average speed of her trip?” A question commonly asked by
teachers is “How did you solve this?” Unfortunately, this question more often than
not directs students to the calculations they performed, so a likely response is; “I
divided 240 by 5, and the answer is 48." A question designed to direct students more
toward the underlying conceptual ideas would be: “When you divided 240 by 5 and
got 48, what is 48 a number of? That is, to what does 48 refer in this situation?” Such
a question is designed to direct students to focus on the quantities in this problem
and on the relationships among those quantities.? Instead of asking, “What did you
do?” ask, “What were you thinking?” Instead of asking, “What calculation did you
perform?” ask, “What are you trying to find when you do this calculation (in the
situation as you currently understand it)?” Explaining how one solved a problem
answers the question “What did you do?” but explaining how one thought about a
problem answers the question “ Why did you do that?” Both daing and reasoning are
important, but when working with children, teachers tend to focus most attention
on the doing. [ suggest that teachers be helped to focus also on the reasoning.

82




Randolph A. Philipp
L

Assessment

(4) What understanding of concepts or knowledge of procedures do your
students possess prior to instruction? Do you assess what your students
learn on a daily basis?

Denise 5. Mewborn (1999) reported observing a student teacher who reflected
on her instruction on the topic of #ime; after teaching about time for four days, the
student teacher came to realize that her students had already known what it was that
she was trying to teach. How often is this scenario repeated daily in classrooms?

Most teachers are surprised by some of the problems primary-grades children
cansolve. Carpenter, Ellen Ansell, Franke, Elizabeth Fennema, and Linda Weisbeck
(1993) found that most children, by the end of their kindergarten year, could solve
a variety of mathematics problems, including addition, subiraction, multiplication,
division, and multistep problems. For example, 50 out of 70 kindergartners in May
correctly solved the measurement division problem “Tad had 15 guppies. He put 3
guppies in each jar. How many jars did Tad put guppies in?" and 45 out of 70
cotrectly solved the multistep problem “Maggie had 3 packages of cupcakes. There
were 4 cupcakes in each package. She ate 5 cupcakes. How many are left?” (pp. 434-
435). Children use various strategies to solve such problems, and their strategies
reflect different levels of sophistication. For example, some will solve the problem
“Kris has 5 apples. How many more apples does she need to buy to have 11
altogether?" by putting out 5 counters, then putting more out and counting "8, 7, 8,
9, 10, 11,” and then counting the additional counters they put out to see that the
answer is 6. Another child will say, “Five {pause), 6, 7, 8,9, 10 11 (raising fingers
as he counts)” and count the six fingers put up. Another child might say, “Five and
5is 10, and 1 more is 11, so the answer is 6.” There are teaching implications for
these findings; in particular, one must wonder what happens to a child who needs
to model these problems when no counters are avaitable for him or her to use? Most
primary-grades children who can solve the division problem like that presented
above do so by modeling the task. If they do not have permission to use counters
or if the counters are not accessible, most children will be unable to make progress
on the problem, Another teaching implication has to do with teachers’ expectations.
If teachers do not believe that young children are capable of solving such problems,
they will not consider posing them.

In my mathematics methods course my students interview children of different
ages; they find that whereas primary-grade children understand much more than the
teachers had expected, intermediate-grade children understand much /ess than they
had expected. Evidently years of learning procedures without meaning have left
many intermediate-grade children without the kind of understanding needed to
build upon. Consider the fifth-grade boy from Vignette 2 who thought 1/3 + 1/3 =

- e ———————
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2/6. How could he make sense of a lesson designed to help him understand fraction
multiplication?

Only by conducting daily assessment can a teacher determine whether students
need what is being taught and whether they are learning what they need to learn.
How can a teacher build assessment into each daily lesson? What questions could
be posed during the lesson that might clarify what students know? (In addition, wha#
is being assessed? Are students expected to learn just procedures and algorithms,
or is understanding also valued?)

Understanding develops ina complex and fragile manner, and no two students
learn at the same pace because no two students enter with the same knowledge or
interest in the subject. One consequence of the complexity and fragility with which
understanding develops is that teachers cannot assume that students have learned
simply because they have been told. Alba Thompson once said that there is a
difference between putting the students through the curriculum and putting the
curriculum through the students. Teachers can determine which they are doing only
by assessing their students.

Final Comments

In this article I have provided four questions supervisors might find useful
when considering mathematics instruction by elementary school preservice teach-
ers. My emphasis on cantent reflects my concern that as long as student teachers are
guided by an image of mathematics as a set of procedures they are unlikely to value
changing how they teach or what they assess.

Mathematics educators continue to believe that basic facts are critically
important. However, when and how these basic facts are to be learned is an open
question. The California Mathematics Academic Content Standards {California
Department of Education [CDE], 1998) were written as a reaction to the overstated
view that mathematics education reformers have been calling for the elimination of
memorization and of the teaching of rules. The new Standards are more traditional
than the 1992 California Framework (CDE), and they call for students to memorize
facts and procedures earlier. However, the Standards also call for students to
develop understanding of mathematical concepts.

Providing the kind of instruction described in this article requires courage
because most teachers have been taught traditional mathemnatics through traditional
instruction. That is, the institution called schooi—with support from the recently
published California Mathematics Academic Content Standards (CDE, 1998),
which may be interpreted by teachers, administrators, and curriculum developers
as devaluing a deeper understanding of mathematics in favor of memorizing facts
and procedures—may provide compelling reasons for teachers not to question or
alter their current practices. Furthermore, most teachers have not had opportunities
to develop deep conceptual understanding of the mathematics they are teaching.
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Consequently, if teachers give problems to their students and allow students to use
their own solution techniques, the teachers will at times find that their students are
better mathematical thinkers than they are. Exposing themselves to this vulnerabil-
ity may be more than most new teachers are ready to give.

Finally, the important information is in the details. It is easy to say that one
values conceptual understanding, but the meaning of this term becontes clear to
others only through examples and discussion. When student teachers say that they
are teaching for understanding, ask for specific examples. Asking students to be
more explicit not only will help you determine how the teachers are thinking but
may have the more important benefit of helping the teachers step back and look at
their own knowledge and beliefs about mathematics and mathematics teaching.

Notes

1. Many teachers are unaware that different cultures use different algorithms and that no
algorithm is the way to work a problem, but instead each is a way (Philipp, 1396).

2.1 do not want to understate the difficulty I have had trying to encourage students to listen
to one another. Often [ was satisfied if the students simply looked at the child who was
sharing his or her thinking. Perhaps part of the difficulty came about because | presented
lessons only once each week, and the skill of listening to other students as they describe
their thinking processes and analyzing these processes is clearly nontrivial. This
statement should not be surprising given that adults seem to experience difficulty
listening to one another. Someone once said, “No one really listens o anyone else, and
if you try it for a while you'll see why.”

3. Quantities are distinguished from values; whereas distance, time, average speed, instan-
taneous speed, and acceleration are quantities, their values are the numbers associated
with each. Most classroom discourse is about the values instead of the quantities, so that
students may recognize that to solve this problem they divide 240 by 5, but they may
not recognize that speed may be conceptualized as the mutual accrual of distance and
time.
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